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NOMENCLATURE

:f;' A,B Disk identity

Z:';-;j: Cc Actual volume concentration of disks

- Cp Maximum possible disk concentration

" D Disk diameter

1? d Thickness of disks
é‘:i Eg Rotational energy/4 moment of inertia

b I Moment of inertia

a i,j,k"' Unit Cartesian vectors

:‘:l’i m Disk's mass

;}? N Areal number density of disks

A N,P Unit vectors

G p Linear number density of disks

: R Ratio of the mean velocity to the fluctuating velocity

E";‘ s Mean interparticle separation distance

Dﬁ T Fluctuational energy in rotational motion

eﬁt; T; Fluctuational energy in translational motion

o Ue Tangential velocity of the contact point

u Mean component of translational velocity

& V,VA,8 Fluctuating component of translational velocity

"\ V,V4, 33 Total instantaneous translational velocity

" VAK VAP‘ Velority components

33 Vaye Ve

s w Work done by shear forces

::: x Variable

'3;; x1,X2 Coordinate axes

0 * Denotes post-collision variables

" a Angle bet—zen V and N

o ay,ap Integration limits for o .
;f B Ratio of the square of the radius of gyration to the square of y
A the radius (} for a disk) a
. AE Average energy loss per collision :
? A__i Average momentum transfer per collision in the x; direction !
\ AM; Average momentum transfer per collision in the x, direction 3
'E' € Coefficient of restitution 4
f u Coefficient of friction i
v + Boldface variables indicate vector values.
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Ps Density of disks

6 Angle defining the point of collision with the flow direction
f Mean component of angular velocity

w.,wpwg Instantaneous angular velocity

w' Fluctuating component of angular velocity

¢ Dissipation rate from inelastic and frictional collisions

T21:T22 Stresses




CONSTITUTIVE RELATIONS FOR A PLANAR,
SIMPLE SHEAR FLOW OF ROUGH DISKS

Hayley H. Shen and Mark A. Hopkins

INTRODUCTION

The flow of a granular material is an important transport process in industry
as well as in nature. Examples of granular flows are grain flows in chutes and hop-
pers, slurry flows in pipelines, avalanches, and the transport of sediment and broken
ice floes in rivers and oceans. At present, engineers who work with such flows
depend largely upon empirical or semi-empirical information. Recent developments
in the theories describing the consti.utive relationships for rapidly sheared granular
flows have revealed many insights into the properties of these flows. These develop-
ments may soon lead to a sound theoretical basis for the engineering design of
granular flow systems as well as provide a better understanding of many geophys-
ical phenomena.

However, there is a major defect in the existing theories that are capable
of analytically describing stresses in rapidly sheared granular flows: these theories
neglect the rotational motion of particles. From a laboratory study of gravity
flow of rough disks in a frictionless chute with rough walls,* we have observed
particle rotation in the shear field and found it to be an important component in
the interactions between disks. A sequence of pictures taken from the laboratory
study illustrates this phenomenon (Fig. 1).

Recent computer simulations of simple shear flows of rough disks in a channel
with rough walls also showed the importance of the particle rotation i the rheologi-
cal behavior of fast granular flows. Campbell (1982) and Walton (1984) found that
the rotation of the disks could contain energy as high as 20% of the total energy
of the disks’ motion.

There are a few studies that have considered the rotation of particles (Kanatani
1979, Shahinpoor and Siah 1981). In these studies, the rotation is assumed to be
an independent kinematic variable unrelated to its generating mechanisms, which
include the material properties and the gradient of the translational velocity field.
As a result, only very preliminary, qualitative expressions for the constitutive rela-
tionships are obtained, which are of limited engineering interest.

Recently, Lun and Savage (in press) analyzed the effect of particle rotation
on the constitutive relations for a granular flow of spheres. They adopted the kinetic
theory approach and analyzed the complete dynamics of colliding spheres. They
quantified the rotational motion by using the tangential component of the relative
velocity and the surface property of the colliding spheres. The surface property
of the colliding spheres was assumed to be a material constant g, -1 < B < 1,
such that in the tangential direction of collision, the relative velocity before and
after the collision has a ratio equal to 8. The value B = 1 corresponds to a smooth

* Part of an ongoing experimental study at Clarkson University under National
Science Foundation Grant No. CME-8011601.




Figure 1. Time lapse image of a gravity-driven disk flow (At = 0.04 sec).

surface with no friction, B = 0 corresponds to infinite friction and B = -1 corres-
ponds to a complete reversal of tangential velocity. As Lun and Savage (in press)
stated, this parameter 8, instead of being a constant, should be a function of the
frictional coefficient, the normal impulsive force during collision, and the tan-
gential inelasticity at the contact surface.

In this report, we present an analysis that quantifies the constitutive rela-
tions for a planar, simple shear flow of rough disks. This type of flow may be used
to model the motion of floating broken ice in northern rivers and arctic seas;
therefore the result is of practical interest. Also, there are computer-simulated
data (Campbell 1982) for this type of flow that can be used for direct compari-
son.

The rotational motion of the shearing disks is computed from a statistical
average of a random collision process in the granular material. These collisions
are inelastic and frictional. It is assumed that all colliding disks separate with
no relative tangential velocity. This assumption enables us to directly compare
our results with Campbell's data. However, this assumption would mean an in-
finite friction coefficient. Extension of this analysis to incorporate a finite fric-
tion coefficient is currently underway.

The random collision process obtains its energy from the translational mean
velocity field. These collisions produce a random motion in the flowing mater-
ial. This random motion has both translational and rotational modes. Both
modes of motion are completely determined by the imposed mean translational
velocity field and the material properties. By introducing the restitution and
frictional coefficients as independent parameters, the relative motion of collid-
ing particles in the tangential direction can be determined as a function of not
only the frictional property, but also the normal impulsive force at contact. This
approach incorporates slightly more fundamental physics than that of Lun and Savage
(in press). 2




MODELING PROCEDURE

Consider an assembly of shearing uniform disks as shown in Figure 2, where
the diameter of disks and the size of the average gap between disks are denoted
by D and s. The thickness of the disks is d, the density of the disks is p g and the
interstitial fluid is neglected. The area concentration C of the disks is related
to D and s, as shown in eq 1, through the densest possible concentration Cgq (Shen
1982). In this study, Cy is assumed to be 0.906, the concentration for a hexagon-
al close packing.

C D ?
&) (1)

The disks in Figure 2 have a restitution coefficient € and friction coefficient p.
In our study, u = « is adopted in order to model collisions such that relative mo-
tion at the contact point will be destroyed. This assumption enables us to make
a direct comparison with existing computer-simulated data (Campbell 1982) and
it greatly simplifies the analysis.

There are four kinematic variables for each individual disk: ui, the mean
translational velocity; v/, the fluctuation of linear velocity; ¢k, the mean angular
velocity; and w', the fluctuation of angular velocity. Both the linear and angular
fluctuations are random variables that have a spectrum of magnitudes. However,
they will be simplified here so that the instantaneous velocities of a disk are

V=ui+v (2a)
and
w = Rk +w' (2b)

where the two fluctuations v' and w' have constant magnitudes and random direc-
tions. The translational velocity ¥', which occurs in the x;, x» plane, can take all
possible directions within the angle 27, while the rotations @' must all be directed
along the k coordinate axis. Therefore

w=twk. (3)

The magnitude of the three kinematic variables v/, w' and Q are determined by the
material properties of the disks and the driving mechanism created by the shear
metion as defined by u(xj). Without this shearing, collisions can not be maintained
in the flow, hence there will be
no established random motion in
either the translational or the

X2

‘ rotational sense.
Q u(xz) The mean angular velocity
2 can be obtained through the
following analysis. Consider two
O colliding disks as shown in Figure
Q x; 3. Since fluctuations have zero
4 O net effect on the averaged rota-
@J_ O tion, these two disks can be as-
T sumed to move with the mean
D

velocities as shown in the figure.
Figure 2. Simple shear flow of uniform disks. The relative motion of the two

3
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Figure 3. Colliding disks moving with
mean velocities.

average sense. Since

1 = sin’6d6=%
r

the average of eq 4 yields

_ 1 du _
Ue = QD+2Dd—x2—O
which implies
__ldu
Q= 2dx2k°

points on the surfaces of two disks at
contact is

CqD.pdu o, oD
UC—92+Ddx2sin9+92. (4)

Whenever U, is not zero, a frictjonal
force acts to retard the disks' relative
motion at the contact point, Since the
mean linear velocity is maintained by
the shearing motion, the retardation
contributes to readjusting their angu-
lar velocity only. Eventually, as steady
state is reached, U, must vanish in the

(S)

(6)

This same result has been shown by Campbell (1982) in the computer-simulated
shear flow of disks and has been derived by Lun and Savage (in press) for a sim-
ple shear flow, assuming that random motions have a Maxwellian distribution.

As the derivation of  shows, when {2

-4(du/dx), only in the average sense is

there no relative motion between two colliding disks. Both the randomness of
contact location and relative impact velocity ascribable to disk fluctuation can
cause the angular velocity to deviate from the mean value . Denoting the angu-
lar velocity fluctuation by w', this fluctuation is a consequence of random contact
location and the fluctuation of the linear velocity v'.

The angular velocity fluctuation w' is determined in the following way.
The assumption of steady, simple shear flow implies that the energy contained

in the rotational mode must be constant.

Ep = w'*,

Let

(7)

Ep being constant requires that, on average, the angular fluctuations before and
after collision must be the same. Consider two colliding disks A and B as shown
in Figure 4. The angular velocities of these two disks are random!ly chosen as

W

1+

wp = 0

w.

I+

wB--Q

(8a)

(8b)

Let w* denote the post-collision velocity of disk B from one of the four random
combinations of ws and wg. The condition that Eg = w'? is constant can be

4
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Figure 4. Colliding disks with ve- Figure 5. Energy balance in a con-
locity fluctuations. trol area.

described as

ff%—{(w*-ﬂ)’da de
) [{ do do

)

ml

where 6 and o are defined in Figure 4 and the integration is over all possible val-
ues of these two variables. This integration will be carried out later when ranges
for 8 and a are determined. The result of this integration determines w'.

The two kinematic variables, v' and w', determine the energetics of this
shearing assembly of disks. Consider a control area as shown in Figure 5, where
W represents the rate of work done by the shear forces and ¢ represents the rate
of dissipation from inelastic and frictional collisions. In a homogeneous flow, as
the shearing reaches a steady state, W must be equal to . In mathematical form,
this can be writtenas W = ¢ or

dau _ Vv, =
TZId—xZ——N S AE (10)
where T ) is the shear force, N is the number of disks in a unit control area, 8 is
the mean gap size between adjacent disks, and AE is the average collisional energy
loss.
The stresses are modeled as a result of collisional momentum transfer
across control surfaces (Bagnold 1954)

| ——
T2 =D!s-AM'1 (11a)
Tzz=p1;-'mz (11b)

where p is the number of disks per unit length along the boundary of the control
area in Figure 5, and AM | and AM; are the average linear momentum transfer in
the x; and x, directions because of collisions.

As shown by Shen (1982),

4C




(13)

where C is the area concentration and Cg is the densest area concentration that
corresponds to 8 = 0. Substituting eq 11 into eq 10 and using p/D = N (Shen 1982),

we obtain

du — e
E{DAMI = AE. (14)
The quantities AM; and AE are functions of the material properties of the disks

and the four kinematic variables du/dx;, Q, v' and w'. With ' determined in eq 9,
eq 14 is then used to solve for v'. After v' and AM; are determined, the stresses

can then be specified using eq 11a and b.
In the next section, details are provided regarding the solutions for w', V',

ml and AM2.

DERIVATION OF STRESSES

In this section, the four averaged quantities—angular velocity fluctuation
(w'), translational momentum transfer in the x; and x, directions (AM; and A M)
and energy loss during collisions (AE)—are first determined as functions of the
material properties and the strain rate. Equations 11a and b are then used to
compute the shear and normal stresses.

As shown in Pigure 6, disks A and B are colliding at the location specified
by 6. The coordinate system is fixed on disk B and moves with the mean velocity
of the disk just prior to collision. The relative fluctuation velocity between A
and B, ¥ 2V), is randomly distributed between the angles o ; and a ;. The four quan-
tities w', AMy, AMp and AE are obtained by integrating over 6 and a.

The values of o and a 3 are derived from a kinematic constraint on V', such
that the pre-collision velocity of A, Vg, must be within + 7/2 of N in order for a
collision to occur (see Fig. 6). From the law o;' sines, it can be shown that (Shen

1982

az=-01= -;— - sin"YR sin20) (15)

where
=pAu_ /3
R-Ddxg 2/ 2 V. (16)
Using the approximation sin~1x = x
yields
w
ap=-0ay * — -Rsin26. (17)

The unit vectors N and P as shown in
Figure 6 are the normal and tangential
Figure 6. Definition sketch of ran-  yectors at a g.ven contact point speci-
domly colliding pairs of disks. fied by 8. The components of N and P are

6
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=-cosf 1-sindj (18a)
and
P=sind1- cosd j. ‘ (18b)

The velocity components of disk A prior to the collision are shown in Appen-
dix A (eq A4a and A4D) as

du

Vay = -DE sin® cosd + V2 v' cosa
e and ,
o i
i it
P _pdu ., ' I
':i;: Vap = D g, 5in*0 + 2 V' sina. o

Average momentum transfer in the x, direction—AM,;
A M, is the average transfer of momentum in the x; direction attributable

c'; to collisions. By use of the reference frame that moves with the mean motion
33;‘ of disk B just prior to collision, the transfer of momentum from disk A to disk B

becomes equal to the post-collision momentum of disk B in the x; direction.
& Therefore

AMy=m V¥ 1 (19)

where V¥ is the post-collision velocity of particle B. The average momentum
transfer A M; resulting from all possible collisions can be expressed as

- -
e

m.
ﬂD‘dIofaf AMyda db

; M, = ps (20)
) 41" [aa do
i
- where a1 and o ; are defined in eq 15. The velocity V; can be described in terms
{ of the components in the N and P directions:
o * — * *
v %"N+ VBPP. (21)
ii The post-collision velocities of disks A and B depend on the pre-collision
velocities and the material properties characterized by the restitution coefficient
e and the friction coefficient p. In this analysis, the post-collision tangential
. velocity between A and B is assumed to be zero. This is the same condition used
' in Campbell's computer-simulated shear flow of disks (1982) and implies that the
. friction coefficient p is infinite.
) Letting u equal infinity, the velocity components of disk B after the colli-
. sion are derived in Appendix A (eq A5c and A5d) as
’ (1+€) du =
* - '
.; VBN— 7 ( Ddxz sin® cos® + Y2 V' cosa)
1 du s ., D
VB‘;= Z{Dd_xz sin’6 + VY2 +v'sina + 7‘“A+ wg)}.

. 4 DLW GRS RN A ¥ Sl i v 1. 84,2 4,9
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The angular velocities wp and wg contain both mean and fluctuating com-
ponents, as defined in eq 2b. However, since the average of the fluctuating
components is zero, AM does not contain the fluctuation component of angular
velocities. Hence only the average angular velocities are necessary to describe
VQ'P. From eq 6 it is seen that

1 du
Wp = wg= Q = - i Fx_z
therefore, vgp can be written as

1 1. du 5
V8, ——(-EDE cos 26+Y2 V' sina ). (22)

After substituting eq 18a and b, 21 and A5c and d into eq 20 and integrat-
ing, we obtain the average momentum transfer in the x; direction as

AMI = Pg

d(D )(0 106¢ +0.124). (23)

Average momentum transfer in the x, direction-AM,

AM,; is the average transfer of momentum in the x, direction ascribable to
disk collisions. Again our reference frame is fixed on disk B prior to a collision.
In this reference frame, the momentum transferred is equal to the post-collision
momentum of disk B in the x, direction. Hence the average value of the momen-
tum transfer in the x, direction is

. D [ [*2 ¥+ jda db

AM, = pg 7 1“ (24)
{7 %2 da do
0 “ag

with a; and o, defined in eq 15.
After substituting eq 18a and b, 21 and A5c and d into eq 24 and integrat-
ing, we find that the average momentum transfer in the x, direction becomes

_ 2
M, = _ps"_D;ii. 1 {o. 012(Ddiuz- ) +0.287(1+e W'2}. (25)

Rotational fluctuation—w’

The instantaneous angular velocity w has both a mean and a fluctuating
component as defined earlier in eq 2b. Since all rotations are in the k direction,
w may be written as

w =2 £ w. (26)

Consider two colliding disks A and B as shown in Figure 6. Let w* denote
the post-collision angular velocity. As shown in Appendix A (eq A2e and f with
B = 1)

wp= wf= 1 (20~ wg~2Va, /D) (27)

wi

where wa and wg are given in eq 26. Since there are four arbitrary combina-
tions of wp and wg, the post-collision angular fluctuations are
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. 1 . K
oy - @ = 3{t20's w'-2(0+ 5 )} (28)

where the four combinations of the t signs are to represent the four combina-
tions of wp and wg.
From Appendix A (eq A4b)

Vop= D -g#? sin6+v/2 v sima.

The average angular fluctuations as derived in eq 9 can now be obtained after
substituting eq 28 and A4b into eq 9. The integration limits are again 0 6 s 7
andoy S o £a,, witha,, o, given in eq 17. This integration then gives
2

2 '
2 _ du A4
w'2 = 0.125 (—dxz +1.024 () (29)

This derivation for w' is rather formal. A more intuitive way of deriving
w' is given in Appendix B, where a semi-Monto-Carlo method is used to generate
w'. The result, however, is identical to eq 29.

Energy loss—AE

AE is the average energy loss in an inelastic and frictional collision. As
discussed earlier (eq 7), the average rotational energy does not change in a steady
state. Hence AE may be modeled as the result of translational energy loss alone.
For a given collision, the translational energy loss in a pair of disks A and B is

AET =% m(Vas Va - Vit* V¥ + Ve Vg - V¥ - V¥) (30)

where m = pg(mD?*d/4) is the disk's mass. ___
The average translational energy loss AE7 is

T eap CUR2_ yr2 _ yn2_ ya2
Jo Jog? (Viy + Vg~ 2= Y2 = ya2— ys2)da do

EE; = G1)

m a2
[ Ialda de

since Vg is zero in the chosen reference frame. As derived in Appendix A (eq
A5a and b),

(1+€) du >
Ve = (-D sin® cos® + V2 V' cosa)
AN 2 dxz

—dga':'ii) (s sin‘9+% )+5/2 v sina
6

D
yr =
Ap

Substituting eq A4a and b and A5a, b, ¢ and d into eq 31 yields the average colli-
sional energy loss

_ 2
iE = (DFd:—z )" (0.0464-0.0261¢2) + v'2 (0.386-0.244¢ ) . (32)
9
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“ In a steady, homogeneous shear flow, the work done by shear forces must
Ot equal the energy dissipation from inelastic and frictional effects of the colli-
v sions between disks. This balance law has been shown to reduce to (eq 14)

p-3 £y, = IE.

ts At
S Substituting eq 23 and 32 into eq 14, we obtain the fluctuation of linear
N velocity
v
' = du 0.0261€2 +0.106¢€ +0.0776 \1/2
. v'= (Dgg, ) 038602042 ) - (33)
ﬁ’,:: Substitution of eq 33 into eq 29 allows the flucutation of angular velocity to be-
R come
iy
L
,_ du -0.00382+0.109¢ +0.128 |1/2
- w'= 4, (7 0.372-0.244& ) (34)
AN
NG
f:,@:;s’ At this point all the kinematic variables have been found in terms of the
Ay mean velocity gradient.
X
b SHEAR AND NORMAL STRESSES
1 ]
)
’j,‘u': The shear and normal stresses are obtained by substituting eq 23, 25, and
413' 33 into eq 11a and b. This yields
)
S D du 2 0.0261¢2+0.106¢ +0.0076+1/2
t21 = C(FHUD+)(—-) (0.1066+0.124 (=350 r———)  (358)
and
_ D 2¢_du 12 0.0075¢* +0.035¢2 +0.053¢ +0.027
T2 = psC(5) (D+9)H(—5) 0.386-0.244¢ (35b)
L
:‘qi‘ Removing the dimensions from the stresses by dividing eq 35a and b by
:: ?: psCoD4du/dx,)? results in the following nondimensional stresses,
R
.~§52§°,g 1% = (0.106€ +0.124) [ 0.0261¢2+0.106¢ +0.0776 ) 172 (36a)
21 - [(Co/C)l/e-1] 0.386—0.244¢"
"i;"f;géﬁ and
DA
el ox = 1 0.0075¢* +0.035¢2 +0.053¢ +0.027 (36b)
A 22 " [(Cy/CY77-1]) 0.386-0.244¢" )
ot
:::::.’ COMPARISON WITH COMPUTER-SIMULATED STRESSES
e
fo::::, To date, there have been no data obtained from physical models of shear-
ot ing disks that can be used to verify the theory developed above. The only ex-
. perimental data currently available are from computer simulations by Campbell
,';;{‘a; (1982). The comparison between Campbell's data, eq 40a and b and the shear
4 Y'-‘e,
10
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Figure 7. Comparison of theoretical prediction and computer
simulation.

stress obtained by Shen (1982), which did not consider disk rotation, is presented
in Figure 7.

We observe that by including disk rotations, the shear stress is reduced
for the case when uy = «. The comparison between the computer simulation
data and eq 36a, b is, in general, satisfactory except when the disk concentra-
tion is lower than 0.3. We believe that at lower concentrations, the momentum
transfer that is related to mass transfer increases. However, in the present
analysis, mass transfer is not considered. Since for high concentrations, mass
transfer is negligible, the correlation is closer in this regime. As the concentra-
tion decreases, we therefore expect that collisional momentum transfer alone
would produce stresses that are lower than measured values.

DISCUSSION

We make two major observations on the result of this theoretical develop-
ment. The first is that the assumption of equipartition of fluctuation energy
does not apply in a dissipative granular flow. The second is that the distribution
function of the random fluctuating states does not have a significant effect on
stresses.

Since the modeling procedure for determining the stresses is very similar
to the molecular dynamic approach used with dense gasses, and since the equi-
partition of energy in molecular random motion is well-known for gasses that
are in equilibrium, it has been suggested that a form of equipartition between
the rotation and translation motion of each individual disk may exist (Kanatani
1979). It is therefore interesting to compute the ratio between fluctuation
energy in the rotational motion and that in the translational motion, which

yields

11




i Tr | fle? (37)
‘c":' Ty T imv

».» where I is the moment of inertia for disks. Substituting eq 29 and 33-and using
I/m = D?/8 for a disk—into eq 37 gives us

o Tr . 0.06-0.04¢2

o T, = (o3Z+1.1e+08) * 0128 (38)

Wl which is far from being equal to unity and depends explicitly on the material
' property €. The reason that the friction property does not appear in eq 38 is
that the condition of u approaching infinity is assumed in this analysis. We ex-

‘v:‘ pect that when a finite friction coefficient is considered, the partition ratio
AR would also be a function of the friction coefficient.
vy In this theoretical development, it is recognized that both the linear and

v angular velocities of disks are random variables. However, in order to make the
mathematical manipulation manageable, serious simplifications have been made.
We assumed that the fluctuation components V' and «' are randomly directed,
but constant in magnitude. In order to make a constant V' and w' contain the

) same energy as a distributed v' and w', the constant v' and w' must be the stan-
c.:; dard deviations of the real distributions. It has been suggested that the calcu-
'_.{:: lated stress level could be lowered significantly by ignoring the real distributions
i (which could be Maxwellian as suggested by Jenkins and Savage [1983] and Lun
S et al. [1984]) and by assuming a constant magnitude for the fluctuating compo-
o nents. The stresses obtained by Shen and Ackerman (1982), for example, when
! analyzing the simple shear flow of uniform spheres were about three-fold lower
s than those obtained by Lun et al. (1984).

Vg However, the result of the present analysis suggests that this is not the

case, at least for a flow of disks.

This conclusion is based upon the close agreement between the present
theoretical results and the computer-simulated data of Campbell (1982), since
e in the computer simulation, the distribution of fluctuation motion is inherently
; & included. If the velocity distribution can make a three-fold magnification of
e stresses, it would also be revealed in Campbell's data. The fact that the present
' theory and Campbell's data agree so well supports the validity of this simple

model.

! CONCLUSIONS

— Constitutive relations are developed for a granular continuum undergoing
a simple shear flow. The granular continuum flow consists of uniform disks mov-

é“: ing in a plane. The result of the analysis may be used to model the motion of

3 broken ice fields on rivers and oceans.

%% The major contribution of this analysis is that it includes the disk rotations.
The analysis was able to relate this rotation entirely to its generating mechanisms,
namely, the linear velocity gradient. Previous studies of this problem either ig-

s nored the rotation completely (e.g. Shen and Ackermann 1982, Jenkins and Sav-

,:a: age 1983), or treated rotation as an independent mode of motion, unrelated to

:.:u the linear velocity gradient (e.g., Kanatani 1979, Shahinpoor and Siah 1981).

4:*:‘ The stresses are formulated as the rate of momentum transfer attributa-

*.s:: ble to binary collisions. These collisions are inelastic and frictional. The re-

= sults show explicitly the effect of material properties on the stress level. How-
ever, the constitutive laws remain in the second power form

{
i
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which makes granular flow behave differently from viscous fluid flows.
The significant findings of this investigation are:
1. The stress level is decreased from previous analysis (Shen and
Ackermann 1982) when disk rotating is included.

2. There is no equipartition of rotation energy and translational

energy.

3. The distribution of random fluctuation does not have significant

effect on stresses.

Good agreement between the theoretical results and computer-simulated
data is obtained. This demonstrates the need for continued development of the
simple model used in this analysis. Future work should extend the present model
to analyze mixtures of different sizes and irregular shapes. In order to analyze
a general flow, the analysis should also be extended to include a general deforma-
tion field described by a tensor with all four components du;/3xy, duy/3xy,
dup/duy, duy/duy. The above-mentioned studies are currently underway.
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APPENDIX A: POST-COLLISION VELOCITIES

Consider two disks A and B colliding with each other as shown in Figure 6.
Equations governing the collision between disks A and B were developed using
the laws of conservation of linear and angular momentum, the energy loss be-
cause of incomplete restitution, as specified by the coefficient of restitution,
and a frictional closure condition.

Wy + V), = Yy +Vey (Ala)

Vip + Vilp = Vap+ Vi, (Alb)

VAP . V‘;
Bwup - - BwA "R (Alc)

Va Vi
P P
Bup + = BubY - (Ald)

(Vg'u - ‘ﬂ',") / (VBN- ‘ﬁ') =~ (Ale)

Vs + Ruf = W% = Rut. (A1f)

The above six equations are used to solve for the six post-collision varia-
bles, Vit V;(; R Vg;‘, Vg, w*, and w*. The frictional closure condition used in this
report fg that the relative tangen%lal velocity at the point of contact after the
collision is zero. This implies that friction is always great enough to destroy
the relative tangential velocity, or that friction coefficient is infinite. The six
post-collision variables are obtained from eq Ala—f as

vk = UsEly, 4 (e y (A2a)

, _(B*2) Vot BYa, ~DB(uyrg) / 2 (A2b)
P 2(1+8)

vy = Ed g ULg) Vo (A2c)

BVAP+ (B+2) VBP+DB(wA+wB)/ 2
Vép = 21+8)

(A2d)

(1+428) wp-wa-2 (Y —Vgy) / D
Nx= +2B) wy u;;_ahs(;@, Bp)/ (A2e)

. -wA+(l+28)w3-2(‘ﬂp-VBP)/D
wg = 2(1+8)

(A2f)

B is the ratio of the square of the radius of gyration to the square of the
disk radius. For a uniform, circular disk, 8 = #%.

With the reference frame located at the center of disk B prior to a colli-
sion as shown in Figure 6, the pre-collision velocity of disk B is Vg = 0. There-
fore, eq A2a-f can be simplified to

15




1-¢)

|
W= S5 Vay (A3a)
.1 D
W =g (5Vap=—3 (watwp) (A3b)
_(1+€)
VB =3 Wy (A3c)
=L (n, +L2 wprep) (A3d)
p=g (ap +7 (optwp)
2V
w; =—;~ (2wp-wg- —DP ) (A3e)
2W
ms‘ =% (-wA+2wB— —51). (A3f)
From Shen (1982)
Vo = - D-3L 5in6 coso+vZ v cosa (A4da)
AN - dxz
Vo = DL §in2+v/2 V" sina (A4b)
Ap dxz *

Substituting these into eq A3a-f, we obtain

Wt = (1_28) (-D g:z sind cos6+v'2 V' cosa ) (A5a)
xa; = % (SD-g:—Zsinze +5/2 V' sina —%— (wprwp) (A5D)
‘6; = (1'58) (-p :;2 sin® cosd+vZ V' cos a ) (A5c)
1 du D
‘g;:g (Dd—xzsinzehlfv' sin a+—2-(wA+wB)) (A5d)
*_ x__1 du /1 2 '
WA = wg --EE(3+ 2sin20) + 2/2 (V/D) sina . (A5e)

In the process of averaging the following series expansions were used:

3 5 7
X X X
sinx=x—ﬁ +—5T - *

_qox2, xb a8
cosx=1-31*+*%1 "6 T

wherex = ap = "/2-Rsin28 andR = D(du/dx)/2/2 v'. The series were trun-
cated after the RZ term.
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APPENDIX B: AN ALTERNATIVE METHOD OF PFINDING w'
We have defined the post-collision angular velocity of a disk to be
w*=0 tw'. (B1)

Using eq A3e, we can define a "second generation" post-collision angular
velocity to be

u)A**=%(2wX-wE-—D— . (BZ)

Substituting eq Bl into eq B2, and subtracting the mean component, {,
yields a "second generation” fluctuating angular velocity, which we then square

v
1 A
o2 = {3 [-z(sz+-D_")¢zw;\m'B]}2. (B3)

If we begin with w! = w} = O (first generation), we find wj to be a function
of (2+Va,/D), hence each succeeding generation of w' is also a function of
(Q+ Wy, /5), which can thus be moved outside the brackets. This quantity is a
function of the point of collision denoted by 6and the direction of v’ denoted by
a and is averaged by integration over the range 6 and a.

We iterate eq B3 over all previous values of w' using the following expres-
sion

p .2
— n-1 n-1 . fj'(Q+T) do d6

i=0 j=0

whereuuA'1 =uu'B =0fori=j=0.

Asn grovJs large (~ 50) the bracketed expression approaches unity. Evaluat-
ing the integral expression yields

. du 2 v' 2
w 2 = O.IZS(Tx-Z-) + 1.024(7)-) (B5)

which is iuentical to the result obtained by the method outlined previously in
eq 29.
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